DIGITAL RESEARCH'

LTIl DR LOGO

Here’s an antidote for
your computer illiteracy

DAVID COLLOPY, SENIOR EDITOR

RN]!
BERNL]

RRENIL

L18-01RBC

Digital Research, Inc.
LT TEEEEE 80672271617 %400 Nasonay
800-772-3545, x400 Califomia

ArTeR HouRrs

Taking advantage of Dr. Logo's turtle graphics, youw'll be creating interesting designs only minules after beginning
fo wse the language. '

DR. LOGO

Here's an antidote for your computer

illiteracy.

BY DAVID COLLOFPY,
SENIOR EDITOR

D inner table conversation can some-
times be as challenging as a formal
invitation to prepare a speech for the
board of directors. Beyond simple
amenities like, “How was your day?” (to
which you always respond erisply,
“Fine"), you're confronted by any num-
ber of queries that require the benefit
of your vast wisdom.

Someplace between soup and salad,
your youngest blurts out, “This big kid
Johnny—in the fourth grade—said there
ain’'t no Santa Claus. Is that true?”
Worse still, shortly after dessert, your
teenager demands, “‘How old were you
when you started dating?”

But what really gets to you these days
is when they want to know about that
personal computer you're using at work.
“Well, what do you do with it? How does
it work? Can you make it talk to the com-

puter at our school? Can you program it
to send a rocket to the moon?”

Before they get a chance to ask even
more complicated questions, you quickly
respond. “Well, today I used a spread-
sheet program that helped me get a
handle on next year’s budget. First I
typed in a history of the amount we've
been spending the past five years, and
then I figured in the rate of inflation for
materials as well as the increase in ship-
ping costs. Later I used a word process-
ing program to type the second draft of
the Fletcher Foods report. Of course,
that was after [updated the files on the
customer data base with information
that our field reps called in.”

You're well aware that the canned
speech you're making is being delivered
to the wrong audience but, nevertheless,
you carry on. After all, you honestly
don’t know how this machine performs
its miracles and you know even less
about how its programmers tamed it in

the first place. Besides, reeling off your
speech is playing it safe. Even more
complicated questions may be lurking
behind the salt and pepper shakers. This
is especially likely these days since your
children probably get more exposure to
microcomputers at school than you do at
work. (See “Even an adult can do it.”)
Maybe it's not only the kid’s questions
that get to you. Perhaps you're curious
about how the computer works its won-
ders. In either case, you may be well ad-
vised to get in touch with Dr. Logo.

A concept is a concept
Dr. Logo is the Digital Research
(Pacific Grove, Calif.) version of the
increasingly popular Logo computer
language. This language was first devel-
oped as an easy-to-use introduction to
the art of computer programming. The
earliest offerings were designed with
children (and other first-time computer
users) in mind, but the tide seems to
have turned. Lately, the Logo language
has entered the business environment.
One reason for the business community’s
interest in Dr. Logo is its ease of use.
As the personal computer continues
{eontinues on page 81)

(After Hours from page 78)

to proliferate in the work place, there
is a parallel increase in the number of
end users (the term the software indus-
try uses for people who use applications
such as spreadsheet analysis and word
processing without ever actually devel-
oping their own programs).

For the most part, these computer
users are satisfied with packaged soft-
ware and have little need or inclination
to develop programs of their own.
Besides, the development of software
products as sophisticated as most of
those commercially available requires
more than simply understanding pro-
gramming languages and concepts.
Include an investment called time—usu-
ally no fewer than three or four years.

On the other hand, the same user that
is satisfied with those products may find
an occasional need to develop simple
programs, ones outside the realm of
those commercially available. Even
more likely, this user may simply want
to understand the process that makes
commercial software tick. The catalyst
here is nothing more than curiosity:
wanting to learn more ahout computers
and why half the world seems to be
programming them.

Knowing how to use Dr. Logo will
give you some idea of the conceptualiza-

tion process behind the software prod-
ucts you take for granted. You may
never want to tune up your car, but
when you understand a little about how
the internal combustion engine works,
you inevitably develop an entirely new
perception of the automobile,

Initiating the illiterate

Essentially, Dr. Logo allows you to
become a computer literate non-
mechanic who would be comfortable at
a cocktail party hosted by the data pro-
cessing department. As a matter of fact,
by the time you've completed the tuto-
rial supplied with the Dr. Logo lan-
guage, you'll have a clear understanding
of the concepts behind programming.
Thereafter, it's only a matter of time
before you'll be able to take that knowl-
edge and write a practical application.

Dr. Logo encourages you to do top-
down structured programming. This
entails breaking tasks into little pieces
until you have a sufficient number of
pieces to do a larger task. By being able
to write small procedures that deal with
specific functions, you can build on some-
thing you've successfully completed.

Beyond simple structuring, Dr. Logo
encourages you to use a language with
which you're already familiar—English.
It allows you to name procedures so that

when you've completed a program, it
makes sense. Your program is a string
of commands that you've chosen.

And Dr. Logo provides a few features
that competitive products do not. It in-
cludes a double-precigion floating point
calculator so that you can incorporate
sophisticated mathematic procedures
into your programs. There is a split-
screen text editor that can be used to
make debugging programs simple. And
Digital Research integrates lower-case
support into its product, whereas the
competition uses only capitalization.

In addition, Dr. Logo includes an
on-line Help facility—when you're per-
plexed, you can ask the product for assis-
tance. And finally, Dr. Logo retails for
$99.95, while the IBM version is $175.

Dr. Logo is by no means the vehicle
I'd recommend should you be interested
in designing complex, sophisticated
software programs. For one thing, Dr.
Logo programs operate far less quickly
than those developed in other computer
languages.

However, if you're interested in
understanding more about the mystique
beyond the computer keyboard (or you
want to reclaim that lost position of
authority at the dinner table), Dr. Logo
may be just the preseription. [

eprinted_with permission
gu}s)r.ness égmpé)t:ng, ‘?e%ru{;?';pl 984

DIGITAL RESEARCH

Product Brief

DR Logo™ OVERVIEW

DR Logo is an advanced version of the popular Logo
programming language. DR Logo runs underthe CP/M®
family of operating systems and is designed for the Zilog
Z-80® orthe Intel 8080 and 8086 family of microproces-
sors. DR Logo is easy to learn, and yet provides the
features to produce sopbhisticated applications.

DR Logo automatically checks command and state-
ment syntax as you enter each program line. Then, pro-
gram lines are translated into a condensed, internal
format. DR Logo interprets the condensed program lines
during execution. :

DR Logo is aninteractive, procedure-oriented language
in which the user can add new words to the language by
defining new procedures. Powerful symbolic and list
processing capabilities, combined with Turtle Graphics
provide a quick and easy method for creating high-
quality graphic images. The DR Logo package includes
sophisticated programming tools such as a full-screen
editor and an interactive debugger. DR Logo also pro-
vides informative error messages and a “Help" facility.

TURTLE GRAPHICS PRIMITIVES

DR Logo's Turtle Graphics support high-resolution,
point-relative graphic displays. A computer-controlled
turtle appears on the screen and responds to com-
mands that make it move FORWARD and BACK and
rotate LEFT or RIGHT. The turtle appears as a triangle to
indicate its current position and heading. As the turtle
moves, it traces its path. DR Logo includes primitives to
query and change the turtle’s current state.

PRELIMINARY

DR Logo FEATURES

m Turtle Graphics Primitives

B List Processing Primitives

B Recursion Supported

B Floating Point Mathematics Package

B Sophisticated Debugging Facilities

m Workspace Management Primitives

m Comments and Indentation Supported

m Informative Error Messages and Help Facility
® Game Programming Primitives

m Apple Logo Compatible

LIST PROCESSING PRIMITIVES

DR Logo's powerful list processing primitives simplify
text and data manipulation. The basic data object in DR
Logo is a word. Words can be combined into lists. DR
Logo can manipulate lists of objects: numbers, words,
symbols, or even other lists. DR Logo's list processing
primitives allow you to add, delete, modify, and move list
elements.

RECURSION SUPPORTED

DR Logo supports recursive procedures including tail
recursion. Sophisticated garbage collection prevents
workspace shortages during the execution of recursive
procedures.

FLOATING POINT PACKAGE

DR Logo includes a double-precision floating point
package that supports fifteen significant digits. This
arithmetic accuracy makes DR Logo suitable for busi-
ness applications and provides additional precision for
sophisticated graphics applications.

SOPHISTICATED DEBUGGING FACILITIES

DR Logo can separate interaction with the interpreter,
program output, debugging information, and Turtle Gra-
phics into individual frames on the screen. This allows
the user to view the program output and commands
simultaneously while debugging. When activated, the
TRACE facility displays the name and level of each
procedure as it is called. The WATCH facility causes a
pause after the execution of each statement. During the
pause DR Logo allows the user to interact with the
interpreter to check or modify variables or expressions.

—

Copyright © 1983 by Digital Research

WORKSPACE MANAGEMENT PRIMITIVES

DR Logo provides additional primitives to manage the
expanded memory in 16-bit personal computers. These
primitives can change the logical order of procedures in
the workspace, cross-reference procedures, and add or
remove comments or help information.

COMMENTS AND INDENTATION

DR Logo's features aid both coding and maintenance of
programs. The addition of extensive comments and
indentation of source code toindicate a program'’s struc-
ture do not affect the size of an executable program. The
NOFORMAT primitive removes all comments from the
workspace.

INFORMATIVE ERROR MESSAGES AND HELP
FACILITY

Dr Logo reports program errors with clear, concise
diagnostic messages. Each message indicates pre-
cisely what is wrong without complicated terminology. A
Help facility is built into the POPRIM primitive. It can
display a definition and example for each DR Logo primi-
tive, minimizing the need to reference the manual.

GAME PROGRAMMING PRIMITIVES

DR Logo has two unique game-programming primitives:
SPIN, which outputs a random integer between 0 and
the input number, and SHUFFLE, which organizes ele-
ments of a list into random sequence.

APPLE LOGO COMPATIBLE

DR Logo is compatible with the LCSI implementation for
Logo for the Apple Personal Computer. Programs deve-
loped under the Apple Logo can execute under DR Logo
with minimal changes to the source procedures.

SOFTWARE PERFORMANCE REPORT

DR Logo is supported by Digital Research's Software
Performance Report (SPR) system. This service pro-
vides a prompt response to technical problems asso-
ciated with DR Logo. Users are provided with SPR forms
which serve as a communications device to inform the
Digital Research Product Support staff of user-identified
problems.

HARDWARE REQUIREMENTS
8-bit System

B An Intel 8080/8085 or Zilog Z-80 microprocessor.

B Operates with any 8-bit Digital Research operating
system including: CP/M, MP/M and CP/NET.

B 64K of available memory is required, notincluding the
operating system.

16-bit System

B An Intel 8086/8088 microprocessor.

B Operates with any 16-bit Digital Research operating
system including: CP/M-86, Concurrent CP/M-86
and MP/M-86.

W 128K of available memory is required, not including
the operating system.

DIGITAL RESEARCH

Digital Research, Pacific Grove, CA., is the leading pro-
ducer of microcomputer operating systems, languages
and utilities for 8- and 16-bit microcomputers. For eight
years, Digital Research has been involved with the
design, development and support of microcomputer
software. Digital Research's operating systems are the
industry standard. Digital Research’s languages and
productivity tools are designed for the professional pro-
grammer writing commercial software packages. Digital
Research's CP/M graphics products are the standard
interface necessary to bring graphics software to market.
Together, they form a family of compatible software
products. Digital Research users include over 800,000
systems, 700 OEMs and 600 independent software
houses.

Digital Research products and logo are either trademarks or regis-
tered trademarks of Digital Research.

Z-80 is a registered trademark of Zilog Corporation.
Apple Logo is a trademark of Apple Inc.
Copyright @ 1983 by Digital Research. PB 19

NOTE: The information set forth in this Product Brief is descriptive
only. For detailed specifications consult the DRI technical manual for
the product.

Printed in the United States.

DIGITAL RESEARCH"

P.O. Box 579

Pacific Grove, CA 93950
408-649-5500

TWX 910 360 5001

DIGITAL RESEARCH

LTI Digital Research’s
DR Logo

Gary Kildall, Digital Research, Inc.
David Thornburg, Innovision

EERE]]
HEERY]

R

BYTE Magazine
BRI jone 1953

Vol. 8, No. 6
ART 113

\ i I I II. Digital Research, Inc.
BER PG, Box 570
160 Central Avenue
Pacific Grove, CA 93950

408-649-5500

Digital Research’s DR Logo

A user-friendly language comes of age.

Gary Kildall
Digital Research Inc.
POB 579
Pacific Grove, CA 93950

David Thornburg
Innovision
POB 1317

Los Altos, CA 94022

Logo for personal computers has been heralded by
some as the beginning of a revolution in computer
languages that promises to be as far reaching as the in-
troduction of the personal computer itself. Yet many
people think that Logo is
not much more than a
graphics language for
children. Adding to this
confusion is the fact that
some commercial im-
plementations of Logo are
weak (somewhat akin to a
version of English that
contained no adjectives). Because of the confusion sur-
rounding Logo itself, the appearance of a sophisticated
version of this language on a professional microcomputer
such as the IBM Personal Computer might be expected to
raise some eyebrows. The development of a powerful
Logo for 16-bit computers such as the IBM PC can change
our way of thinking about programming.

In this article we will show what makes Logo truly
powerful, what it can be usad for, and how Digital
Research’s DR Logo, with its powerful language, large
workspace, and complete program-development envi-
ronment, sets a new benchmark by which to measure the

DR Logo Iincorporates the list-
processing capabilities of LISP with
a syntax that can be learned by
children. And Logo and LISP share
other powerful features, too.

properties of useful computer languages.

To help you understand the power of Logo, we'll give
you some background about the earlier language LISP.
LISP, developed more than 20 years ago by John
McCarthy, is overwhelm-
ingly the language of
choice for researchers in
the field of artificial in-
telligence. Unlike many
other languages, LISP lets
users perform operations
on several data types, in-
cluding numbers, words,
and lists. A list can consist of a collection of words,
numbers, or lists themselves. Because the names of LISP
primitives or procedures are also words, one can write
LISP programs that automatically generate other LISP
programs. It is the ability to manipulate this type of data
that gives LISP its name (LISt Processing).

LISP has been used to explore topics as diverse as im-
age processing, the analysis of natural language, the com-
puter solution of certain types of “intelligence” tests, and
theorem proving. More mundane programs in LISP (such
as word processors) have also been created. Viewed from
any angle, it is a powerhouse of a language.

From “Digitial Research's DR Logo” by Gary Kildall and David Thornburg appearing in the June 1983 issue of BY TE magazine, Vol. 8, No. 6.
Copyright C 1983 BYTE Publications Inc. Used with permission of BYTE Publications, Inc.

DR Logo incorporates the list-processing capabilities of
LISP with a syntax that can be learned by children. More
than the utility (and beauty and simplicity) of turtle
graphics, it is this list-processing capacity that gives it so
much power.

Other important characteristics are shared by Logo
and LISP. Among these is the ability to extend the
language through the creation of procedures that are
treated just as if they were part of the language itself. As
with some FORTH devotees, many Logo enthusiasts see
themselves as not writing programs, but as creating new
“words” in Logo tailored to the solution of their par-
ticular programming task. While this may appear to be a
subtle distinction, it has a tremendous effect on program-
ming style. This style affected the design of Digital
Research’s Logo in several ways, especially in the debug-
ging and procedure-management tools.

The Power of DR Logo

Before showing what Logo procedures look like, we
will list a few of the characteristics of DR Logo. To pro-
vide maximum power to the user, we designed the first

implementation of DR Logo for the 16-bit IBM Personal
Computer. The use of a 16-bit processor greatly increased
the amount of workspace available to the user and also
yielded a modest speed improvement over 8-bit versions
of the language. A DR Logo user with 192K bytes of
RAM (random-access read/write memory) has about
10,000 nodes available for use. (See the text box above.)
For comparison, an Apple Il user running Apple Logo has
only about 2800 free nodes to work with. It goes without
saying that sophisticated applications require com-
parably more workspace than simple ones, and it was im-
portant to its designers that DR Logo be able to handle
sophisticated applications.

In addition to list processing and turtle graphics
primitives, DR Logo can work with integers (30 bits long
plus a sign) and both single-precision and double-
precision floating-point numbers. A full set of
transcendental functions (log, square root, etc.) allows
this language to be used for scientific programs as well.

DR Logo is a superset of Apple Logo and more than
just a language. A complete programming environment,
it includes its own operating system, program editor,

Logo, Turtles, and Kids

Anyone who has watched the personal computer industry
for the past few years has probably seen the evolution of cer-
tain myths regarding computer languages. Many devotees of
BASIC, for example, claim that it is the optimal choice for
the home user because of its nearly universal adoption as the
default language for personal computers. The fact that
BASIC was the only high-level language that was readily
available in compact form in the late 1970s is not considered
to be relevant by many users. Fortunately, the recent
availability of other languages on personal computers (Logo,
Pascal, FORTH, and PILOT, to name but a few) has afford-
ed programmers other choices. But some of these languages
have myths of their own.

In the case of Logo, the common myth is that it is a turtle
graphics language designed to be used exclusively by
children. As evidence in support of this myth, one is pointed
to Seymour Papert's book Mindstorms. It is true that Papert
devotes the bulk of his book to the use of turtle graphics as a
powerful programming and discovery tool for children, and
that he stresses the accessibility of Logo to the young and in-
experienced.

The problem with the Logo myth is that it suggests that

Logo is exclusively for children's use. As with many myths,
the reality of the situation is quite different. First, it is true
that Logo supports turtle graphics. In this regard it is similar
to some versions of Pascal, PILOT, and FORTH. Note also
that, while turtle graphics is accessible to children, it also has
applications of value to advanced programmers as well.
Anyone who doubts this would benefit from reading Turtle
Geometry by Abelson and diSessa or Discovering Apple
Logo by Thornburg.

The point is that Logo is no more a “kid's" language than is
English. Yes, English is the language of “Mary Had a Little
Lamb, " but it is also the language of Moby Dick and Shake-
speare’s sonnets.

At its base, Logo is a symbol-manipulation language in the
finest sense of the word. Rooted in the artificial-intelligence
language LISP, Logo allows the user to extend its
vocabulary, to use recursion, and to manipulate various
types of data in ways that are nearly impossible with
languages like BASIC.

It would be a shame if the myth of Logo kept serious pro-
grammers from exploring a language whose foundation goes
to the heart of computer science itself.

debugger, and a set of workspace-management tools
designed to speed the successful implementation of even
the most convoluted artificial-intelligence program.

The graphics system is designed to use either the color
monitor alone or to use the color monitor for turtle
graphics or mixed text/graphics applications and the
monochrome monitor for procedure editing, debugging,
and pure text programs. The color display uses the 320-
by 200-pixel medium-resolution mode and supports 16
background colors (eight colors that are either bright or
dim). It also supports two foreground color sets of four
colors each.

A Brief Glimpse at Logo Procedures

Before describing the editor and workspace-
management tools, we will examine what a Logo pro-
cedure looks like by illustrating the creation and
manipulation of a list. A list in Logo is a collection of
words, numbers, or lists that are enclosed in square
brackets. Each item in the list is separated by a space. For
example, [cow horse sheep snake] is a list; sois[1 1 2
3 5 8]. The first list consists of the words cow, horse,
sheep, and snake; the second list consists of the first six
numbers of the Fibonacci series. A more complex list
would be [car [dump truck] airplane [railroad engine]],
in which two of the elements are words (car and airplane)
and two elements are lists of two words each ([dump
truck] and [railroad engine]). Also, a list can have one

word in it ([yellow]) or even be empty ([]).

In common with other computer languages, Logo
allows values to be assigned to names. For example, you
can assign a list to a name with the make command, e.g.:

make ‘‘friends [Pam Roy Pat George]

The quotation mark is used by Logo to indicate that
friends is a word, a variable name in this case, and not a
command. If we tell Logo to

print :friends
we will see

Pam Roy Pat George

on the screen. The colon in front of friends lets Logo
know that we want to see what is bound to the variable
rather than the variable name itself. If we had entered

print “friends
we would have seen

friends

on the screen instead.

You can take lists apart in Logo with commands such
as first, butfirst, last, and butlast. For example, if we
enter

print first :friends
the screen will show
Pam
The command
print butfirst :friends
prints
Roy Pat George

Now that we know a little about lists, let's explore Logo's
extensibility by creating a new command in the language.
Suppose you did a lot of work with lists and you found
that you would like to rotate a list by moving its first ele-
ment to the rear end and pushing everything else up
front. We can create a word (e.g., rotate) to do this for
us. If we had such a procedure, we could make a rotated
version of friends by entering

make ‘‘neworder rotate :friends

Because Logo doesn't have a primitive called rotate, we
can create a procedure with this name that looks like the
following:

to rotate :list
output sentence butfirst :list first :list
end

This procedure accepts a list (denoted by the local
variable name :list) and makes a new list starting with all
but the first word and then appending the first word to
the end of the list. The sentence primitive (or native in-

Photo 1: An example of turtle graphics with DR Logo.

struction) is used to assemble a list from two parts. The
output command passes the new list back out of the pro-
cedure to any procedure that used rotate, or to the com-
mand level.

Once defined, Logo procedures are treated just as if
they were part of the language’s native vocabulary. For
example, if you were to enter

print rotate :friends
the list
Roy Pat George Pam

would appear on the screen.

Logo’s ability to manipulate lists by taking them apart,
adding to them, examining their contents, and altering
their order is central to the use of Logo in the creation of
knowledge-based programs. For an excellent introduc-
tion to the use of lists in the creation of a knowledge
“tree” that “sprouts” new nodes as the program gets
“smarter,” you should read Harold Abelson’s discussion
of the program animals in his book Apple Logo.

In addition to the ability to perform list processing and
arithmetic, DR Logo also supports an excellent turtle
graphics environment. While much has been written
about turtle graphics, especially on its use with children
(see the text box on page 214), it is important to understand
that turtle graphics is of tremendous value to expert pro-
grammers as well. The power of this graphics environ-
ment comes through its description of the shape of an ob-
ject as a series of incremental steps that create it. Once a
procedure describing an object has been written, the ob-
ject can be displayed at any screen location, orientation,
and size without having to tamper with the basic descrip-
tion. For example, the procedure

to square :size
repeat 4 [forward :size right 90]
end

can be used to create a square at any screen position,
angular orientation, or size. To draw a square at a given
place, you first instruct the turtle (a cursor that has both
position and orientation) to move to a specific x-y coor-
dinate and heading (angle). Next you type square 50, for
instance, to create a square with sides 50 units long. This
property of turtle graphics procedures, coupled with
Logo’s capacity to run recursive programs, has allowed
the easy exploration of geometrical shapes and their
properties. See photo 1 for an example of turtle graphics.

Programming Tools

DR Logo provides many tools to assist the program-
mer. While smaller Logo systems can adequately survive
with a rudimentary procedure editor, larger Logo en-
vironments benefit from some of the extra tools that
make program analysis and debugging less tedious. DR
Logo's procedure editor allows the use of both uppercase

and lowercase letters for programs and data. Two
primitives, uppercase and lowercase, allow the conver-
sion of a word from one case to the other. Also, pro-
cedure listings can be indented to make decision branches
and nesting easier to see. While not essential to the crea-
tion of good programs, such formatted listings are easier
to read.

While Logo’s syntax generally makes procedures easy
to read, it is valuable to have comments appended to cer-
tain program lines. This ability is provided in DR Logo,
along with the ability to strip these comments from pro-
cedures with the noformat primitive if more workspace is
needed. If the name or syntax of a Logo primitive or
editing command is forgotten, online help is available.

Once procedures are created, DR Logo has several
primitives that help show how procedures interact with
each other. This is especially important for those Logo
enthusiasts who experiment with several coexisting ver-
sions of procedures before settling on the final choices.
Most versions of Logo will print the names of resident
procedures on receiving the pots command (print out
titles). If, in DR Logo, you enter potl, the workspace will
be examined for all top-level procedures (those not called
by other procedures) and their names will be displayed
on the screen. If you enter pocall followed by the name of
a procedure, DR Logo will examine the calling structure
of the named procedure and print the names of the pro-
cedures used by the one mentioned, as well as the names
of the procedures used by these secondary procedures,
and so on until the calling sequence is complete. This
gives a great deal of information on the internal organiza-
tion of the Logo workspace. If, on the other hand, you
enter poref followed by a procedure name, all the pro-
cedures that reference this name will be found and
displayed.

Many Logo programmers create procedures in a
haphazard sequence. Because a listing of multiple pro-
cedures follows the sequence in which they were entered,
large listings can be hard to assimilate. By using the DR
Logo follow command, procedures can be resequenced in
any order, thus allowing large listings to be more easily
scanned.

Once you are ready to try a Logo program, DR Logo
provides additional tools to assist in debugging. One of
these tools allows the text screen to be split into windows
corresponding to the command level, a user 1/O (in-
put/output) port, and the debugger (see photo 2). The
trace command traces the procedure and displays what is
happening and at what level the procedure is relative to
the top (command) level. Because a single recursive pro-
cedure (that calls a copy of itself) may oscillate through
many levels, knowing the level at which an error occurs
is helpful when fixing the fault. The command watch
allows single-step execution of a procedure with the abili-
ty to change values and see the effect of each statement.
See photo 3 for an example of the watch function.

The use of multiple text windows in debugging is only
one application for this powerful tool. The development
of good window-management tools can, by itself, in-

Photo 2: Multiple text windows in the debugging mode, with
the trace function turned on. The upper left window is the Logo
interpreter where you enter Logo commands. The debug win-
dow in the upper right displays information on the current pro-
gram that is running. Qutput from the program and input that it
requests are handled by the program window at the bottom.
The trace function follows the program as it runs, showing the
level at which a procedure is called, the name of the procedure,
and the values of variables as they are defined. The island pro-
cedure being traced has two inputs: a list and a number. This
shows up as level 1 in the debug window. The gosper sub-
procedure is called and begins to execute at level 2 with its
variables, size and limit. The gosper subprocedure is recursive
and calls a copy of itself that begins executing at level 3.

Tanimal
In auimal, pr (Think of an saisal. [will try to guess It by asking guesticralt

Think of an animal. | will try to guess it by asking questions

In animal, chooze branch :knowledge

in chooge. branch, I (wordp ‘mode) [guesz mode stopl

In choose. brasch, make “response ask.yes.or.se (guestion :wode)
1o question, op firet wode

Irn ank.ysz or. .m0, pr 'qusstions

Does (it bark

1w ask. yes.or.mo, make “isput readlist

no

Io esk.yea.or.mo, IF laput = [yex) {op [yes)) :isput

Imal

lo ssk yen.or. w0, IF :input =
In ask.yes.or.me, if “lwput =

[yex] (op [yasl]
Inol {op Imel] _

ju:88} 12/87./81|06: 20: 44

Photo 3: The watch function lets you interact with a program
line by line as opposed to the trace function that runs con-
tinuously. The animal procedure is being run while the watch
function is on. (The question mark on the first line is the Logo
prompt.) The name of the current procedure being called is
given at the beginning of each line. This is followed by a line
from the procedure that is about to be executed. You can hit the
return key to execute that line or you can type in a Logo com-
mand to display values that the procedure is using. Program in-
put and output occur separately on their own lines.

crease the simplicity, flexibility, and power of this pro-
gramming environment.

Applying DR Logo in Education

Perhaps because of its historic use as a discovery tool
for children (and because of the typically small
workspace found with most implementations), Logo is
not generally perceived as an applications language. It is
anticipated that DR Logo will prove to be an exception in
this regard.

The educational applications for Logo have typically
focused on the use of turtle graphics. The beauty of turtle
graphics is that children simultaneously acquire skills in
programming, geometry, and art. Many children who
are “turned off” by math have discovered it to be an ex-
citing field through their exploration with turtle graphics.
Furthermore, it has been found that once a child uses
Logo to discover new ways of thinking about mathemat-
ics, this new way of thinking continues to produce
beneficial results—even if the child is no longer exposed
to Logo.

In the physical sciences, Logo can be used to construct
microworlds in which bodies obey different natural laws,
such as gravitation. By exploring these artificial
microworlds, children can develop better intuitions
about the properties of their own corner of the universe.
(See “Designing Computer-Based Microworlds” by R. W.
Lawler on page 138 of the August 1982 BYTE devoted to
Logo.)

Given Logo’s powerful list-processing capability, one
would expect it to be of value in the language arts as well.
To pick one simple example, suppose a child created
several lists called nouns, verbs, adjectives, articles,
etc., and assigned appropriate words to each list. The
word order in each list can be randomized with the shuf-
fle command, and a random sentence can be constructed
by assembling words from each list in a syntactically
valid order. Legitimate nonsense sentences can be
automatically generated in this fashion (e.g., No yellow
toad smells tall people.) while bringing the child to look
at and solve the structure of English.

Photo 4: An example of business graphics possible with DR
Logo. The program that produces this picture is in listing 1.

The educational value of this program can be seen on
several levels. First, if the child creates the lists of words,
a misplaced word will show up as a misplaced part of
speech. Having a verb appear when a noun is expected
results in an obviously invalid sentence structure. The
result is a self-reinforcing mechanism for learning the
parts of speech. Second, the student can learn to identify
valid sentence forms without sample words (sort of the
reversal of the traditional parsing process). This helps to
cement sentence structure concepts as well. Finally, the
student learns some of the challenges awaiting those who
want to create natural-language interfaces between peo-
ple and computers.

DR Logo in Business

While Logo is not usually thought of as a language for
business applications, DR Logo has several characteris-
tics that may change this perception. The creation of an
interactive illustration generator using an inexpensive
graphics tablet is quite easy in DR Logo. Photo 4 shows a
possible display of business graphics, and listing 1 is the
program that produced it.

In addition to business graphics, the list-processing
capability of DR Logo makes it suitable for database
management. In fact, one might envision incorporating
some of the results of research in natural-language
understanding to generate a query system that responds
to questions such as: “If we increase our salaries by 10
percent this year and increase our sales by 20 percent next
month, what will our profit be in the fourth quarter?”

There is no question that many business applications
will be found for DR Logo, but it is premature to set
limits on the scope of these applications.

DR Logo in Artificial Intelligence

There has been much talk lately about knowledge-
based or “expert” systems. The noble efforts of personal
computer software experts notwithstanding, sophisticat-
ed microcomputer programs that can adapt to various
queries are few and far between. The major reason for
this is the inadequacy of most computer languages for
dealing with the types of data and operations natural to
adaptive systems, Because of DR Logo’s close connection
with LISP, we expect to see artificial-intelligence tech-
niques appearing in personal computer software rather
than being limited to university and large industrial
research centers as they have in the past.

This movement is valuable for several reasons. First, it
will help to demystify artificial-intelligence research. Sec-
ond, it will result in the application of advances in ar-
tificial intelligence to the development of practical pro-
grams. To pick one example, suppose you had a com-
puter program (called car repair) that allowed the follow-
ing dialogue:

User: I hear noises when I steer the car.

Computer: Do you think the problem is in your
steering mechanism?

User: Yes, I think so.
Computer: Do you have power steering?
User: Yes.

Computer: Is the noise loudest when you turn the
steering wheel?

User: Yes, but I hear it when the car is idling too.

Computer: You should check the level of your
steering fluid before proceeding. Do you know
how to do that?

User: Yes.

Computer: Fine. Check the fluid level. If it is low,
fill the reservoir and see if the problem is fixed,
otherwise we will continue to explore other
causes.

Programs that allow this type of interaction can be used
for many diagnostic applications and might be far more
valuable applications for home computers than
checkbook balancers or recipe files.

Domestic applications for artificial intelligence repre-
sent a sleeping giant. The list-processing capability and
large workspace of DR Logo will allow this giant to be
awakened and will enable the creation of a whole new
class of applications software.

DR Logo is the first of a new family of languages that
promises not only to change our programming style, but
to alter the way we think about computing itself.®

About the Authors

David Thornburg is an author and lecturer who has been actively in-
volved in the development and support of user-friendly programming
environments. His most recent book, Discovering Apple Logo, shows
how Logo can be used to explore the art and patterns of nature.

Gary Kildall is the president of Digital Research Inc. He is active in
research and was the developer of CP/M, Digital Research’s version of
PL/1, and DR Logo.

References
Logo:

1. Abelson, Harold. Apple Logo. Hightstown, NJ: BYTE/McGraw-
Hill, 1982.

2. Abelson, Harold and Andrea diSessa. Turtle Geometry: The
Computer as a Medium for Exploring Mathematics. Cambridge,
MA: MIT Press, 1981.

3. BYTE. August 1982.

4. Papert, Seymour. Mindstorms: Children, Computers, and Power-
ful Ideas. New York: Basic Books, 1980.

5. Thornburg, David. Discovering Apple Logo: An Invitation to the
Art and Pattern of Nature. Reading, MA: Addison-Wesley, 1983.

Artificial Intelligence:

1. Bundy, A., ed. Artificial Intelligence: An Introductory Course.
New York: North Holland, 1978.

2. Winston, Patrick. Artificial Intelligence. Reading, MA: Addison-
Wesley, 1977.

LISP:

1. BYTE. August 1979.

2. McCarthy, John et al. LISP 1.5 Programmers Manual. Cam-
bridge, MA: MIT Press, 1965.

3. Winston, Patrick and Berthold Horn. L/SP. Reading, MA:
Addison-Wesley, 1981.

Listing 1: A DR Logo business-graphics program. See photo 4 for an example of the screen display. Note the indentation and embed-

ded comments possible with DR Logo.

to graphics

; A sample business graphics program for bar graphs

make "screen.height 198
make "yfactor .25
make "zfactor .575
make "zdeg 22.5
make "xmin -139

make "xmax 139

make "ymin -79

make "ymax 119

make "return char 13
get.request

end

to get.request

(local "reply "h.or.v "s.or.o "2.0r.3)
cleartext

make "reply prompt [Horizontal or vertical bars (h or v)] "char

it i

if

reply = "h

[make "h.or.v "h]
[make "h.or.v "v]
reply = :return
[stop]

make "reply prompt [Solid or open bars (s or o)] "char

if :

if

reply = "s

[make "s.or.o "s]
[make "s.or.o "o]
reply = :return
[stop]

make "reply prompt [2 or 3 dimensional (2 or 3)] "char

b 1

i

make
lf "

bar.
get.
end

reply = 2

[make "2.0r.3 2]
[make "2.o0r.3 3]
reply = :return

[stop]

:reply prompt [Values to be graphed] "list
reply = []
[(stop]
graph :h.or.v :s.or.o :2.0r.3 :reply
request

to prompt :text :type
local "reply

(typ
1Ef- ¢

end

e stext ": char 32)

type = "char

[make "reply readchar print :reply output :reply]
[output readlist]

to bar.graph :h.or.v :s.or.o :2.or.3 :values

clea

rtext

(local "max.value "min.value "origin "width "depth "axis "reply

"graph.width "graph.height "proc "spacing)

if emptyp :values

make

make
1 i

it

it

it

[stop]
"max.value 0
"min.value 999999999
h.or.v = "h
(make "origin list :xmin :ymax make "graph.height :screen.width
make "graph.width :screen.height make "axis 90]

th.or.v = "y

[make "origin list :xmin :ymin make "graph.height :screen.height
make "graph.width :screen.width make "axis 0]

s2.0r.,3 = 2

[make "spacing (:graph.width / count :values) * :yfactor]
[make "spacing (:graph.width / count :values) * :zfactor]

12.0r.3 = 2

[make ":width (:graph.width / count :values) * (1 - :yfactor)]
[make ":width (:graph.width / count :values) * (1 - :zfactor)]

make "depth :width * :zfactor
minmax :values

make

"values scale :values :graph.height * .8 / :max.value

cleanup
penup setpos :origin pendown
if :th.or.v = "h
[line [] list :screen.width ycor]
[line [] list xcor :screen.height]
penup setpos :origin pendown
draw.bars :axis :width :spacing :2.o0r.3 :values
splitscreen
setcursor [0 23]
type [(Return to continue]
make "reply readchar
end

to minmax :1list
1f emptyp :1list

[stop]
if first :list > :max.value

[make "max.value first :1list]
if first :list < :min.value

[make "min.value first :list]
minmax butfirst :list
end

to scale :list :factor
if emptyp :1list
[output []]
output sentence (:factor * first :list) scale butfirst :list :factor
end

to cleanup
hideturtle
setbg 6
penup
home
clean
pendown
end
to draw.bars :axis :width :spacing :2.o0r.3 :values
if emptyp :values
[stop]
setheading axis
draw.l.bar :s.or.o :2.or.3 first :values :width :depth :zdeg
setheading :axis + 90
forward :spacing + :width
draw.bars :axis :width :spacing :2.o0r.3 butfirst :values
end

to draw.l.bar :s.or.o :2.or.3 :height :width :depth :zdeg
(local "origin "direction)
make "origin pos
make "direction heading
1E jHJoY .0 = Vg
[make "proc "open.bar]
[make "proc "solid.bar]
run (list :proc :height :width)
i1f 200,33 - 2
[stop]
forward :height

right 90 - :zdeg
forward :depth

right :zdeg

forward :width

right 180 - :zdeg
forward :depth

back :depth

left 90 - :zdeg
forward :height

right 90 - :zdeg
forward :depth

penup setpos :origin pendown
setheading :direction
end

to open.bar :height :width
repeat 2 [forward :height right 90 forward :width right 90]
end
to line :posl :pos2
1f not emptyp :posl
[penup setpos :posl pendown]
make "posl pos
setheading towards :pos2
forward sqrt sum
sq ((first :posl) — (first :pos2))
sq ((last :posl) - (last :pos2))
end

to sqg :num
output :num * :num
end

to solid.bar :height :width

(local "course "origin)

make "course heading

make "origin pos

repeat :width / 2 [forward :height right 90 forward 1 right 90
forward :height left 90 penup forward 1 pendown left 90]

if remainder :width 2 = 1
[forward :height]

penup setpos :origin pendown

setheading :course

end

nce he learns
to doodle

he's learned
[0 program

Introducing perhaps the best way yet for you or
r kids to learn to use an IBM* PC or PCijr.

Dr. Logo™ Language from Digital Research It's
perfect guide for children of the computer age.
grownups who find themselves in the middle of
computer age.

Family Computing says the Logo language is so
iy to grasp, many beginners can learn it in an hour.

And the reason is simple. Dr. Logo is a graphics
guage. So Dr. Logo programming is literally an
ension of what people do naturally, doodle.

The computer keyboard works like a pencil, the
nitor like a sketchpad. With the help of a friendly
tle that traces commands on the screen, you see visual
ults instantly. So Dr. Logo turns problem solving and

rning basic logic into an exciting video game. ___ e

Dr. Logo dictionary. Both illustrated by award-winning cart
Hank Ketcham. "

We also offer three challenging
learning pacs as part of a growing
Dr.Logo library. Dr. Logo Craphics™and RESEA
Dr.Logo Games™unlock the magic of [y ete s
turtle graphics. Dr. Logo Words™uses
words and symbols to create sentences, bar graphs, even p

For more information about Dr. Logo, future Logo lear
pacs or the Digital Research retailer nearest you, call 800-22
ext. 400. In California, 800-172-3545, ext. 400. We think you

we speak the same language

Dr.Logo, Dr.1 gital Research
ared tr mational

DIGITAL RESEARCH"

i LOGO An End-
User Language

Alfred Riccomi

RN
BRI

‘ ‘ ’ 1 | I I I I. Digital Research, Inc.
P.O.Box 579
160 Central Avenue
Pacific Grove, CA 93950

408-649-5500

LOGO AN END-USER LANGUAGE
by
Alfred Riccomi

We have often heard the old adage about history repeating itself. This has been true about computers and computer usage
as well as about most other technologies. Our “young” computer industry has just passed the 25th anniversary of the
commercial introduction of Fortran; the first higher level programming language. Fortran achieved an order of magnitude
increase in the number of people that could be expected to begin to learn how to program computers. That could be compared
to what was achieved for the automobile industry by some combination of the electric starter, the synchromesh transmission,
and the automatic spark advance (do you remember hand cranking, double clutching, and the spark advance lever on the hub
of the steering wheel?) Since the introduction of Fortran, many incremental improvements have appeared: ALGOL with
recursion, COBOL for business applications, PASCAL for better quality structured code, many dialects of Fortran
culminating in Fortran 77 which incorporates many of the best features of the other languages, plus a myriad collection of
other algorithmic languages employing algebraic notation. All have been good at least in some way. None have been to the
computer industry what the automatic transmission was to the automobile industry. None have made it possible for all
end-users to do their own programming. Hence, we still need professional “chauffeurs™ or highly motivated, technically
capable, “daredevil drivers™ to program our machines,

Why would we want end-users to do their own programming? Why have “automatic transmission™ programming
languages? What price would have to be paid for such languages? The answers are pretty much the same to similar questions
about other technologies. More and more people want to use the new technology, be it the automobile, computer, postal
service, telephone, whatever. In each case, projections have indicated the absurd need for every man, woman and child to
become a full time chauffeur, programmer, mail-sorter, or switchboard operator. Of course that is ridiculous; so what has
happened for the older technologies is the development and acceptance of some end-user participation in the application of
the technology: the automatic transmission in the automobile, nine digit zip codes and optical scanners for the mail,
replacement of “exchange name” with all digit dialing, area codes, and WATS lines for the telephone. In every case developers
had to search for, grope for some approach that end-users could learn easily and quickly, something they could understand.
In every case a price had to be paid: greater initial cost, some loss in operational efficiency, and a reduction of flexibility to
meet unusual conditions. In every case the price had to be paid, or that industry’s growth would stop.

Well, what about computers? Today’s half million professional programmers would have to grow to 30 million by 1990 and
three billion by 2000 in order to create all the software needed for the computers that the industry can build and that the
people will want to buy in those time periods (1). Of course what will happen is either the aforementioned stagnation or the
appearance and acceptance of very high level end-user programming languages (plural).

James Martin in his book Application Development Without Programmers (1) includes such languages in his view of the
future. He expands upon how simple and complex query languages, report generators, graphics languages, application
generators, very high-level programming languages, and parameterized application packages will allow end users to bridge
the gap between the necessarily limited number of professional programmers and the need for software. The price that has to
be paid for these end user tools is: more memory and faster CPU’s, less throughput for a given hardware configuration, and
difficulty if not impossibility when trying to solve the usual case. Ah, but the unusual case is what will provide continuing job
security for today’s professional programmers just as it has for chauffeurs, switchboard operators, and postal workers.
Actually, the unusual case is what the professional programmers want to work on: operating systems, data-base manage-
ment, air traffic control, and many more plus, perhaps most important of all, the end-user usable tools themselves.

What about the price, who will pay it? First, the cost of “conventional” software is going up. Figure | shows that the
fraction of total programming costs being spent on software maintenance and conversion has been growing while the fraction
spent for new application development has been declining. Martin projects that maintenance and conversion costs will soon
represent 70 percent of the total cost of professional programming. Meanwhile, the cost of computing hardware relative to
people time has been coming down. Figure 2 depicts how a one million instruction per second computing system (including
memory, disks, etc.) will soon cost less per hour than labor costs, and that by the end of this decade it will be an order of
magnitude less. This cornucopia of computing power will render the premium that must be paid for end-user programming
insignificant when compared to the advantages.

Ah, but how? Will everyone learn BASIC? Perhaps it will be Pascal as has been tentatively decided by the Texas State
Education Agency. Certainly it will not be COBOL or PL-1 as those languages have proven to be elusive to many professional
programmers. Those languages were intended to be friendly to highly specialized, narrow segments of the population. Hence.
Fortran and its interactive derivative, BASIC, are friendly to people familiar with and undaunted by algebraic notation and
with a need to solve mathematical problems. Pascal was intended for the subset of that same group that sought to be
computer scientists. It has proven also to be an excellent tool for large software projects. COBOL was intended to be and is
relatively friendly to professional programmers of business applications. And PL-1 was to be all things to all professional
programmers. How do they serve the needs of the end-user? They don't!

But wait, BASIC is on all the low cost personal computers! Is it not friendly to end-users? BASIC was chosen to be the first
higher level language for microcomputers by Bill Gates and Paul Allen not because it was particularly user friendly. but
because they knew it was the only higher level language that had even a ghost of a chance of fitting within the 4K bytes of
memory that were standard on the MITS Altair 8800 microcomputer in 1975. BASIC has proven to be a good choice for.
unlike Fortran after which it was modeled, it was intended to be interactive and its primary goal was to be used to teach
programming to college students. But BASIC is not for everyone.

What is emerging as end-user programmable computing systems is the result of over a decade’s efforts to find an approach
that end users can learn easily and quickly, something they can understand. Researchers in many places, including the
Massachusetts Institute of Technology and Xerox Park, have found that interactive graphics provide at least one such
approach, perhaps the best approach. Another adage telling us that “a picture is worth a thousand words” is based upon the
nature of human physiology. We all learned to draw (crudely of course) before we learned to write (also crudely). Just this
year Apple revealed their LISA computer which is based heavily upon the interactive graphics research done by Alan Kay at
Xerox PARC. Late last year Visicorp announced its “VisiOn™ software package which is based on the same work as LISA,
and will be available on the IBM Personal Computer, the T1 Professional Computer, and many other systems. The
“Smalltalksoftware system was made available by Xerox earlier in 82, while the Xerox Star when introduced in '81 was the
first commercial product incorporating Alan Kay’s interactive graphics concepts. But all of these examples can best be
described as end-user friendly application delivery systems, nor end-user programmable systems! The first commercially
available example of end-user programmable systems has already appeared. It is the LOGO programming language
developed by Seymour Papert at MIT, and it was first introduced commercially on a personal computer by Texas
Instruments in April, 1981, It was the first such language, but just like Fortran, it will not be the only such language. TILOGO
like IBM Fortran was the first commercially available LOGO for personal computers, but again like IBM Fortranitis not the
last LOGO.

LOGO has its origins in artificial intelligence and in that community’s favorite language, LISP. Harvey Cragonof Tlis a
recent convert to LOGO and he has made the analogy that LOGO isto LISP as BASIC isto Fortran. Alan Kay came from the
MIT Artificial Intelligence community, but at Xerox PARC he followed a different direction than did Papert at MIT. Kay
can be said to have led Smalltalk in the direction of exploiting ever increasing computational power while holding to a fixed
cost. Papert led LOGO towards ever decreasing cost while holdingto a fixed computational power. Hence, Smalltalk '80 runs
well on a machine with 10 times the power of a Motorola 68000 microprocessor (2), and Tl LOGO runs well on a $750
configuration of the TI-99/4A Home Computer. Now the two are not equivalent, nor are they intended for the same end
users. Smalltalk is intended to facilitate the development of user friendly applications by professional programmers, while
LOGO is an end-user programming language. An interesting rumor has it that Alan Kay, now working for Atari, is
developing a processor for LOGO around a Smalltalk system (no hints as to what kind of computer power will be needed).

Following the introduction of TI LOGO, two offerings of a LOGO developed by MIT for the Apple Il appeared on the
market, one from Terrapin, Inc. and the other from a firm named Krell. Having been created by many of the same people at
MIT that developed TI LOGO this version had some improvements over TI LOGO, namely floating-point arithmetic.
However, it fell short in the area of color and dynamic graphics as the Apple hardware lacked the sprite feature and 16 color
display capability of the IT hardware. During the second quarter of '82, Apple corporation made available another version of
LOGO licensed from LOGO systems Incorporated., a Canadian firm that hired many of the same developers from MIT. That
version included additional features, corrected some shortcomings of MIT Apple LOGO, and promised (but as of this writing
in 83 has not yet delivered) the TI sprite feature. Commodore included a reference to LOGO in the announcement of their
model 64in 82, but it has not yeat appeared. Tandy started delivering a LOGO on its Color Computer late in '82, but at best
this version offers nothing beyond those already on the market. LOGO Systems Inc. is rumored to have licensed their LOGO
to Atari but as of this writing it has yvet to appear. The most significant recent development of LOGO is one announced in
January, 1983 by Digital Research Incorporated (the create and distributors of the CP/M operating system) for both the
IBM Personal Computer and the T1 Professional Computer. This version contains essentially all of the features of existing
LOGO processors (alas, but no sprites) plus many more including the multiple “window™ feature of Smalltalk, Xerox Star,
VisiOn, and LISA. DR LOGO (for Digital Research), unlike all its predecessors which were implemented for specific
machines, is highly machine independent and will be available for all computers supporting either CP/ M-80 or 86 and Digital
Research’ new graphics feature. In my opinion this version of LOGO may prove to become as widespread as was the Fortran
IV version of that language. DR LOGO will become the first widespread end-user programming language, and will be used
for end-user driven applications programming, not only for achieving computer literacy and providing a good environment
for discovery learning in a school environment (3).

Well, what is LOGO? If we examine BASIC we find it has a rather high threshold which must be crossed before one can
begin to create a program that one both likes and would be proud to show to peers. Algebraic notation, a language intended
primarily for solving numerical problems, arrays, and matrices all serve to frighten mathophobic people (3). And if one’s
problem is graphic rather than numeric, BASIC serves as little more than a higher level language host for very low level data
definitions and primitive operations. In other words, BASIC has a large “gulp factor™ (4).

Once mastered, BASIC presents a formidably low ceiling even when compared to other languages of the same genre.
Except for some of the most powerful versions, partitioning of programs into separate procedures is awkward, if at all
possible. Recursion is not allowed. although it has existed since the introduction of ALGOL over twenty years ago and is
included in most languages developed since then. List processing, which is at the core of the power of LISP, is not supported,
although a subset of list processing capabilities is typically offered in the form of a character string feature. Before you get the
impression that 1 am unalterably opposed to BASIC, let me say it has a place in the scheme of things. It has been a great boon
to computing, and one of my proudest accomplishments was the definition of the computers (the 99/4, 99/2, and CC40
Compact Computer), and to Sof Tech Microsystem’s p-System BASIC. Together, these make up the largest current shipping
rate of any dialect of BASIC. That’s good but that is not enough; BASIC is not the “automatic transmission” that is needed.

If we examine LOGO we find a very low threshold that needs to be crossed before being able to produce a program one likes
and is proud of, will show to one’s peers. Immediate success is achieved because the language is designed around interactive
graphics. Doodling, sketching, drawing using “Turtle Graphics™(3) are the universal medium to which all humans subscribe.
Color, motion, and sound are all part of our world. Music, TV, Entertainment on a CRT are more natural today than any
algorithmic notation can ever be. The set of key words is naturally extendable thereby serving as personalized building
blocks. Problem partitioning follows easily through the same “teach the computer a new word™approach (3). Error messages
are in the user’s native language (not numeric codes), and direct one to the offending small procedure into which all problems
big and small are naturally partitioned. Hence *bugs”become fixable problems and not an issue of personal failure. Evidence
abounds that all people achieve success programming in LOGO (assuming they have at least begun to learn to read). LOGO
has a low “gulp factor.™

LOGO has a high ceiling. Recursion, LISP-like List Processing, the aforementioned problem partioning procedural
programming, and interactive graphics combine to make a powerful programming environment. A new concept called
“Dynaturtles” provides dynamic graphics with the physical properties of mass, velocity, momentum, force and quantum
mechanics (3) (5). LOGO has even proven to be well suited in the teaching of introductory college physics at MIT.

Now if one’s problem is numeric rather than graphic, LOGO at first glance appears to lose its advantage over BASIC. The
snytax for performing arithmetic is different from algebra, thereby allaying the fears of the mathopholic. But upon closer
observation, solving mathematical problems requires algorithmic semantics and they are there. However, the goal of LOGO
was *“‘no threshold” over which one must cross to get started programming (3), not no threshold to cross for whatever one may
want to do with a computer. With LOGO the mathophobic user typically has lost whatever fear of the computer may have
existed long before the need to solve a mathematical problem appears. Then, within that person’s native ability, learning the
snytax and semantics needed to solve the problem becomes just a small extension to what is already known.

\

Expenditure on
program maintenance
and conversion TOTAL
> PROGRAMMING
COSTS

Expenditure on
application
development

TIME, YEARS

FIGURE 1

New applications often deferred by the rising cost of modifying existing programs.

10.000 B
COMPUTER HARDWARE COST
($/HR FOR 10 INSTRUCTIONS/SECOND)

1000 4

UNIT
COSTS
100+

11
z
10 - (?(},
PEOPLE (S/HR) @
65 7s 85
YEAR
FIGURE 2

A comparison of the estimated cost of computers with the cost of people in US § per hour.

Just as “everyone” learns to read and write, “everyone” learns to program using LOGO. What “one” reads and writes
depends upon circumstances, personal tastes, and native ability. Likewise what “one” programs with LOGO depends on the
same things. Not everyone writes great poetry or solves partial differential equations with a pencil. Neither will everyone write
Accounts Receivable Programs or design bridges with LOGO; but it is within the reach of everyone to write great poetry and
solve partial differential equations with a computer if they can program.

That is fine but what kind of things would be done through end-user programming? Professional programming today is
best typified as “pre-specified” programming (1). Formal requirements are defined, specifications created, and then the END
USERS SIGN OFF ON THE SPECS! But in the majority of cases that is not what the end users want. In fact they do not
know in detail what they want until they see the result, and then they change it — often! The uncertainty principle of physics
applies to computing: the solution to the problem changes the problem (1).

Professional programming at its best is tightly managed with schedules, milestones, checkpoints. But the end user wants
the problem solution dashed off in order to see the results, and then dashed off again. Formal documentation that is expensive
to produce and maintain, lead times of months and even years, and full time maintenance staffs are what we have, i.e. “a van
pool with chauffeurs.” Self documentation, quick turnaround of days or at most weeks, and incremental maintenance by the
users is what we want, that is “our own car with an automatic transmission.” There is a place for pre-specified computing
where computationally efficient large programs that must be supported “for all time” are requied. But in the vast majority of
cases user-driven computationally extravagant small programs that die when their user no longer needs them are sufficient.
The days of the 4K byte Altair 8800 and the 32K word IBM 7094 are behind us. Today you can buy a Commodore 64 with
over 60 percent as much memory as had the 7094 for under $400. Microprocessors such as the Intel 80286, the Motorola
68000, and the Texas Instruments 99000 offer the CPU speed of the 7094. We are beginning to use this computational plenty
to make computers truely user friendly, including end-user programming languages of which LOGO is the first.

REFERENCES
(1) James Martin, Application Development Without Programmers, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

(2) Adele Goldbearg, presentation of paper titled The Influence of an Object Oriented Language on the Programming
Environment, Proceedings of the ACM computer Science Conference, Orlando, Florida, February, 1983.

(3) Seymour Papert, Mindstorms, Basic Books, Inc., New York, 1980,

(4) John Mashey, Perspectives on Programming Environments, Proceedings of the ACM Computer Science Confer-
ence, Orlando, Florida, February, 1983.

(5) Harold Abelson, LOGO, BYTE/Mc Graw Hill Publications, Inc., Peterborough, NH, 1982,

Reprinted with permission by Texas Instruments Inc., presented April 6, 1983,

A Complete
Family of Powerful
> Programming Languages
For the Apple 11, Il Plus, and lle
Personal Computer.

From the company that brought you industry standard operating systems, languages
and graphics products, comes a complete family of languages and programming
tools formatted for the Apple II line of computers running CP/M?”

CBASIC $150.00 ;I}“hcsc new Cl?(i\’l—ha;cd pfroducts lctt]yotLi]cnjoy
, s e g e 1e same quality and performance that have
CBASIC Compiler $500.00 made Digital Research the leader in micro-

Pascal/MT+ $350.00 computer software development.

Speed Programming Package $200.00 Available December 1. 1983

MicroFocus LEVELIICOBOL" $1,600.00 S

MicroFocus CIS COBOL™ $850.00 PEI‘ld,IHYOU can use it with the new CP/M Gold

DR Assemnbler Plus Tools $200.00 (iard flmm Digital Rcscarch‘ to give your ff\.pple 11
= maximum memory and speed capabilities

Access Manager $300.00 B access to over thousands of CP/M

Display Manager : i ~$400.00 compatible applications

MicroFocus Animator ™ $800.00 B the powerful CP/M Plus Operating System.

MicroFocus Forms-2™ $200.00

Contact Digital Research for more information.

LEVEL II COBOL, CIS COBOL, ANIMATOR, and FORMS-2 are
registered trademarks of MicroFocus, Inc.

The Apple logo and products are either trademarks or registered
trademarks of Apple Computer, Ine.

Digital Research Products and logo are either trademarks or T
registered trademarks of Digital Research, Ine. M DIG ITAL

© 1983 Digital Research, Ine. R_ESEARCHH

10 DIGITAL RESEARCH

The Language for Learning— DR Logo

Whether you are a first time user or an experienced
programmer, DR Logo is an invaluable tool for
learning, programming, and game playing.

Although it's simple to learn, you'll find that DR Logo
is a powerful language that grows with your
computing needs at school, in business, or at home.

If you have never worked with a computer DR Logo
can help you visualize the logic of programming.
While you are having fun creating graphic displays,
DR Logo will be teaching you the basics of
programming. Because you can view the graphics
output and commands simultaneously on a split
screen, errors are easily detected. A full screen editor
makes changing your programs a simple operation.

DR Logo employs turtle graphics to make learning
about computer science enjoyable. The turtle is a
graphic representation of a location on the screen.
The turtle leaves a path of color to show you where it
has been. DR Logo contains many commands that
allow you to instruct the turtle and control its
movements. This approach to programming helps
you to discover mathematical concepts painlessly by
letling you draw geometric shapes on a computer
display. Because it is easy to manipulate, the turlle
will have you programming in no time. A cartoon-
illustrated tutorial for children and an adult oriented
tutorial let you easily learn how to tell the turtle what
you want it to do. If you need help remembering
commands you can ask for a simple explanation and
an example of how each command is used will be
displayed on the screen. DR Logo commands, called
“primitives,” help you create procedures for graphics,

DR Logo provides the challenge of programming without the frustration.
DR Logo and the Digital Research logo are trademarks of Digital Research.

Copyright® 1983 Digital Research. BRC 103

games, and business. Once you have created a set
of DR Logo procedures you can save it and use it
again. Your personal library of procedures can be
changed, discarded or combined with other
procedures to form more complex programs. A
Reference Manual provides the complete
encyclopedia of all available primitives.

If you already know how to program. you'll enjoy this
new approach to writing software. Powerful list
processing abilities make DR Logo suitable for a wide
variety of applications, from simple symbolic
mathematics to natural language translation, artificial
intelligence. knowledge-based systems and robotics.
And if you ever used Apple Logo you'll find

DR Logo provides all the features of Apple Logo plus
the advanced features you want for writing
application software:

Large Workspace

Advanced Debugging Aids

Workspace Cross Reference Commands
Split Screen and Text Windowing

Upper and Lower Case Characters
Expanded String Processing Primitives
Additional Game Playing Primitives
Compatible with Digital Research Graphics

Availability

Look for DR Logo in retail computer stores early this
summer. If you have wanted to program but thought it
was too hard or if you are a programmer and wonder
why it has to be so hard, ask your dealer for a
demonstration of DR Logo.

LOOK WHY YOU

SHOULD BE PROGRAMMING
WITH DR. LOGO LANGUAGE.

Dr. Logo Language will expand your ability to
program creatively, with more features for the sophis-
ticated programmer than any other implementation
of the logo language currently available.

BUILT-IN OPERATING SYSTEM.
SpeedStart™ is embedded on the same disk with
Dr. Logo Language, eliminating the need to use any
other software to begin programming.

SPLIT SCREEN DEBUGGING.
Only Dr. Logo Language features this advanced
debugging which allows you to view and trace
program execution level by level. A special WATCH
facility allows you to pause and modify the program
during debugging.

LOTS OF PROGRAMMING WORKSPACE.
Dr. Logo Language takes advantage of all the
memory you can install on your IBM PC, so you can
write more sophisticated applications. You can
group procedures and variables in packages to
simplify saving, erasing, and displaying objects in
your workspace.

POWERFUL PRINTING CAPABILITIES.
Dr. Logo Language supports upper and lower case
letters for more readable text, and also supports a
printer and color monitor. Monochrome monitor
support is also available.

GREATER ACCURACY.
Double precision, floating point math capability
with 15-digit accuracy provides the power you
need for extended calculations.

ON-LINE HELP,
Command listings and descriptions of what they do
are provided by a powerful help facility which
displays definitions and required syntax of Dr. Logo
Language primitives to help you learn-as-you-go.
AN EASY-TO-FOLLOW TUTORIAL.
Lot of illustrations will help you quickly learn the

logical ways that Dr. Logo Language can help you
solve programming problems.

THE FIRST LOGO
FOR THE IBM PC.

Dr. Logo Language runs on an IBM PC with at least
192K RAM. This memory supports the advanced
functions Dr. Logo Language provides for sophis-
ticated programming and to expand your computing
creativity. You will also want to use;

AT LEAST ONE FLOPPY DISK DRIVE.

IBM COLOR GRAPHICS DISPLAY ADAPTER
AND GRAPHICS MONITOR.

IBM MONOCHROME DISPLAY ADAPTER AND
IBM MONOCHROME DISPLAY. (OPTIONAL)

HOW TO GET
DR. LOGO LANGUAGE.

Dr. Logo Language is available through authorized
Digital Research Dealers. For the name of the dealer
nearest you, call 800-2271617, Extension 400. In
California, call 800-772-3545, Extension 400.

Large volume orders are available through the
Digital Research OEM sales organization.

Call 415-856-4343.

Digital Research products and logo are either trademarks or registered

trademarks of Digital Research, Inc.
IBM is a registered trade name of International Business Machines.

WORKING TO EXPAND
YOUR CREATIVE
HORIZONS.

BEREL D))
10 DIGITAL

USE DR. LOGO LANGUAGE™

TO PROGRAM INTELLIGENCE
INTO YOUR COMPUTER.

PROVIDING

AMAZING VERSATILITY

FOR YOUR IBM PC.

our creativity, making it seem as if your
computer is helping you by becoming more
intelligent. Dr. Logo Language™ is an intuitive
language that lets you logically create solutions to
programming challenges.

Dr. Logo Language includes turtle graphics, a
visual programming package that lets you imme-
diately and easily command your computer to accom-
plish impressive graphics. Procedures created with
Dr. Logo Language can be used as modules
which you can combine and build upon to develop
solutions to the most complex programming
problems.

Dr. Logo Language is a powerful language,
especially in helping you to manipulate lists of
information. You can choose the most convenient
way to handle structures, based on your needs,
either character by character, word by word, or list
by list. As a result, you can concentrate on creat-
ing new solutions to problems, rather than getting
distracted by the mechanics of executing specific
functions.

IDEAL FOR
FIRST-TIME USERS.

This exciting language challenges you to expand
i

Dr. Logo Language is based on the proven educa-
tional philosophy that you learn by doing. Through
friendly interaction with the computer, first-
time users can be writing their own programs in
record time. And, Dr. Logo Language makes pro-
gramming fun!

The versatility of Dr. Logo Language makes
it a powerful tool for the home, office, lab, or any
place you'll find computers being used to create
solutions. And, the language's ability to help you
intuitively control the computer makes it equally
valuable for the programming professional and the
first-time user.

[stop]l while od :body
bodyl [ztopl while
s while :
if rum ico yl [stop] whi

topl

ADVANCED DEBUGGING FOR PROGRAMMERS
Dr. Logo Language's sophisticated debugging can pinpoint
the exact location of a problem within a program. It
allows you to do the debugging on the top screen with
the results displayed on the bottom screen.

This allows you to view and trace the program level
by level to facilitate faster, easier programming.

pprdp "Frank "salesman "TRUE
pprop "Frank "gquota "met
pprop "Frank "age 47

pprop "Bill "salesman "TRUE

pprop "Bill “guota "not met

pprop "Bill “age 58

pprop "Zelig “salesman "TRUE
rerop "Zelig “"quota "met

prprop “"Zelig “age 28

display [[guota = met] L[age > 3811

Frank

display [quota = met]
Frank Zelig

WORK SPACE MANAGEMENT
Dr. Logo Langugage manages data in modules so that
you can manage information more efficiently. For example,
in managing a mail list, Dr. Logo Language will search
for an entire word instead of a string of characters.
Dr. Logo Language is a powerful tool for creating, cross
referencing and managing any large data base.

SOPHISTICATED GRAPHICS
You can easily program Dr. Logo Language to graph data,
such as sales results. Sales figures can be entered simply
by defining the variables in the construction of a rectangle.
Each location can be programmed to respond to changes
in sales figures. Pie charts and other business graphics can
be quickly and easily developed.

TURTLE GRAPHICS
The exceptionally high resolution of Dr. Logo Language's
graphics provides more programmer control by allowing
you to pinpoint the movement of the turtle. Graphics
to suit almost any need can be easily developed and
manipulated.
You can program an exceptional variety of colors with
Dr. Logo Language, even changing background colors.

